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In this article, we introduce the notion of pseudo-Einstein real hypersurfaces in the complex quadric Qm =
SOm+2/SO2 SOm and give a complete classification of such hypersurfaces.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

A Riemannian manifold M is said to be Einstein if the Ricci tensor Ric is a scalar multiple of the Riemannian
metric g on M , that is, g(Ric(X), Y ) = λg(X, Y ) for a smooth function λ and any vector fields X, Y tangent to
M . Classically, Einstein hypersurfaces in real space forms have been studied by many differential geometers.

In complex space forms or in quaternionic space forms many differential geometers have discussed real Einstein
hypersurfaces, complex Einstein hypersuraces or more generally real hypersurfaces with parallel Ricci tensor, that
is ∇ Ric = 0, where ∇ denotes the Riemannian connection of M (see Cecil-Ryan [2], Kimura [3], [4], Romero
[21], [22] and Martinez and Pérez [10]).

From such a view point Kon [9] has considered the notion of pseudo-Einstein real hypersurfaces M in complex
projective space CPm with Kähler structure J , which are defined in such a way that

Ric(X) = aX + bη(X)ξ,

where a, b are constants, η(X) = g(ξ, X) and ξ = −J N for any tangent vector field X and a unit normal vector
field N defined on M . In [9] Kon has also given a complete classification of pseudo-Einstein real hypersurfaces
in CPm by using the work of Takagi [29] and proved that there do not exist Einstein real hypersurfaces in CPm ,
m ≥ 3. Moreover, Kon [8] has considered a new notion of the Ricci tensor ˆRic in the generalized Tanaka–Webster
connection ∇̂(k) .

The notion of pseudo-Einstein was generalized by Cecil–Ryan [2] to any smooth functions a and b defined
on M . By using the theory of tubes, Cecil–Ryan [2] have given a complete classification of such pseudo-Einstein
real hypersurfaces and proved that there do not exist Einstein real hypersurfaces in CPm , m ≥ 3.

On the other hand, Montiel [11] considered pseudo-Einstein real hypersurfaces in complex hyperbolic space
CH m and gave a complete classification of such hypersurfaces and also proved that there do not exist Einstein
real hypersurfaces in CH m , m ≥ 3.

For real hypersurfaces in quaternionic projective space HPm the notion of pseudo Einstein was considered
by Martinez and Pérez [10]. But in [15] Pérez proved that the unique Einstein real hypersurfaces in HPm are
geodesic hyperspheres of radius r , 0 < r < π

2 and cot2 r = 1
2m .

Now let us denote by G2
(
C

m+2
)

the set of all complex 2-dimensional linear subspaces in C
m+2. The situation

mentioned above is not so simple if we consider a real hypersurface in complex two-plane Grassmannian
G2

(
C

m+2
)
. This Riemannian symmetric space has a remarkable geometrical structure. It is the unique compact

irreducible Riemannian manifold being equipped with both a Kähler structure J and a quaternionic Kähler
structure J not containing J . In other words, G2

(
C

m+2
)

is the unique compact, irreducible, Kähler, quaternionic
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Kähler manifold which is not a hyperkähler manifold. So, in G2
(
C

m+2
)

we have the two natural geometrical
conditions for real hypersurfaces M : That [ξ ] = Span {ξ} or Q⊥ = Span {ξ1, ξ2, ξ3} is invariant under the shape
operator, being ξ = −J N , ξi = −Ji N , i = 1, 2, 3, where N denotes a unit normal vector on M in G2

(
C

m+2
)

and
{J1, J2, J3} a local basis of J.

A real hypersurface M in G2
(
C

m+2
)

is said to be pseudo-Einstein if the Ricci tensor Ric of M satisfies

Ric(X) = aX + bη(X)ξ + c
∑3

i=1
ηi (X)ξi

for any constants a, b and c on M . In a paper due to Pérez, Suh and Watanabe [19] we have defined the notion of
pseudo-Einstein hypersurfaces in G2

(
C

m+2
)

with the assumption that b and c are non-vanishing constants. In this
case the meaning of pseudo-Einstein is proper pseudo-Einstein. So in [19] we have given a complete classification
of proper Hopf pseudo-Einstein real hypersurfaces as follows.

Theorem A Let M be a pseudo-Einstein Hopf real hypersurface in G2
(
C

m+2
)
. Then M is congruent to

(a) a tube of radius r, cot2
√

2r = m−1
2 , over G2

(
C

m+1
)
, where a = 4m + 8, b + c = −2(m + 1), provided

that c �= −4.
(b) a tube of radius r, cot r = 1+√

4m−3
2(m−1) , over HPm, m = 2n, where a = 8n + 6, b = −16n + 10, c = −2.

For the real hypersurfaces of type (a) or of type (b) in Theorem A the constants b and c of pseudo-Einstein
real hypersurfaces M in G2

(
C

m+2
)

never both vanish on M , that is, at least one of them is non-vanishing at any
point of M . As a direct consequence of Theorem A, we have also asserted that there are no Einstein Hopf real
hypersurfaces in G2

(
C

m+2
)
.

Now let us consider the complex quadric Qm = SOm+2/SOm SO2 which is a Kähler manifold and a kind of
Hermitian symmetric space of rank 2. For real hypersurfaces M in the complex quadric Qm we have classified the
isometric Reeb flow which is defined by Lξ g = 0, where Lξ denotes Lie derivative along the Reeb direction ξ .
The Lie invariant Lξ g = 0 along the direction ξ is equivalent to the commuting shape operator S of M in Qm ,
that is, Sφ = φS. The tensor field φ on M is defined by φX = J X − g(J X, N)N = J X − η(X)N , so that φX
is just the tangential component of J X . The classification of isometric Reeb flow was mainly used in [26], [27]
and [28]. Moreover, in order to give a complete classification of pseudo-Einstein hypersurfaces in the complex
quadric Qm we need the classification of isometric Reeb flow as follows (see [26] and [27]):

Theorem B Let M be a real hypersurface of the complex quadric Qm, m ≥ 3. The Reeb flow on M is isometric
if and only if m is even, say m = 2k, and M is an open part of a tube around a totally geodesic CPk ⊂ Q2k .

The tensor field φ mentioned above determines the fundamental 2-form ω on a hypersurface M by ω(X, Y ) =
g(φX, Y ). In this case M is said to be a contact hypersurface in a Kähler manifold if there exists an everywhere
nonzero smooth function ρ on M such that dη = 2ρω. It is clear that if dη = 2ρω holds then η ∧ (dη)m−1 �= 0,
that is, every contact hypersurface in a Kähler manifold is a contact manifold.

Contact hypersurfaces in complex space forms of complex dimension m ≥ 3 have been investigated and
classified by Okumura [13] (for the complex Euclidean space C

m and the complex projective space CPm) and
Vernon [30] (for the complex hyperbolic space CH m). Now we want to introduce the following classification of
contact hypersurfaces in the complex quadric Qm = SOm+2/SOm SO2 in Suh [27] and [28], which will be used
in the proof of our Main Theorem in this paper:

Theorem C Let M be a connected orientable real hypersurface with constant mean curvature in the complex
quadric Qm = SOm+2/SOm SO2 and m ≥ 3. Then M is a contact hypersurface if and only if M is congruent to
an open part of the tube of radius 0 < r < π

2
√

2
around a totally real space form Sm in Qm.

Motivated by above two Theorems B and C, let us consider the notion of pseudo-Einstein real hypersurfaces
in the complex quadric Qm . When the Ricci tensor Ric of a real hypersurface M in Qm satisfies

Ric(X) = aX + bη(X)ξ,

for constants a, b ∈ R and the Reeb vector field ξ = −J N , then M is said to be pseudo-Einstein.
Apart from the complex structure J there is another distinguished geometric structure on Qm , namely a parallel

rank two vector bundle A which contains an S1-bundle of real structures, that is, complex conjugations A on
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the tangent spaces of Qm . Here the notion of parallel vector bundle A means that (∇̄X A)Y = q(X)AY for any
vector fields X and Y on Qm , where ∇̄ and q denote a connection and a certain 1-form defined on Tz Qm , z ∈ Qm

respectively.
Recall that a nonzero tangent vector W ∈ Tz Qm , z ∈ Qm is called singular if it is tangent to more than one

maximal flat in Qm . There are two types of singular tangent vectors for the complex quadric Qm :

1. If there exists a conjugation A ∈ A such that W ∈ V (A), then W is singular. Such a singular tangent vector
is called A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such that W/||W || = (X +
JY )/

√
2, then W is singular. Such a singular tangent vector is called A-isotropic,

where V (A) = {
X ∈ T[z] Qm∗ | AX = X

}
and J V (A) = {

X ∈ T[z] Qm∗ | AX = −1X
}
, [z] ∈ Qm∗, respec-

tively denote the (+1)-eigenspace and (−1)-eigenspace for the involution A2 = I on T[z] Qm∗, [z] ∈ Qm∗.
First, in this paper we assert that any pseudo-Einstein real hypersurfaces in the complex quadric Qm satisfies

the following property:

Main Theorem 1 Let M be a pseudo-Einstein Hopf real hypersurface in the complex quadric Qm, m ≥ 3.
Then the unit normal vector field N of M is singular, that is, N is either A-principal or A-isotropic .

Now at each point z ∈ M let us consider the maximal A-invariant subspace

Qz = {X ∈ Tz M | AX ∈ Tz M for all A ∈ Az}
of Tz M , z ∈ M . Thus for the case where the unit normal vector field N is A-isotropic it can be easily checked that
the orthogonal complement Q⊥

z = Cz�Qz , z ∈ M , of the distribution Q in the complex subbundle C, becomes
Q⊥

z = Span [Aξ, AN ], where the complex subbundle C is the orthogonal complement of the Reeb vector field ξ .
Here it can be easily checked that the vector fields Aξ and AN belong to the tangent space Tz M , z ∈ M if the unit
normal vector field N is A-isotropic.

When the Reeb vector field ξ satisfies Sξ = αξ for the shape operator S on a real hypersurface M in the complex
quadric Qm , M is said to be Hopf. Then in this paper we give a complete classification for pseudo-Einstein Hopf
real hypersurfaces in the complex quadric Qm as follows:

Main Theorem 2 Let M be a pseudo-Einstein Hopf real hypersurface in the complex quadric Qm, m≥3. Then
M is locally congruent to one of the following:

(i) M is an open part of a tube of radius r around a totally real and totally geodesic m-dimensional unit
sphere Sm in Qm, with a = 2m, and b = −2m.

(ii) m = 2k, M is an open part of a tube of radius r , r = cot−1
√

k
k−1 around a totally geodesic k-dimensional

complex projective space CPk in Q2k with a = 4k and b = −4 + 2
k .

Now let us consider an Einstein hypersurface in the complex quadric Qm . Then the Ricci tensor of M becomes
Ric = λg. In case (i) in above Main Theorem 2, there do not exist any Einstein hypersurfaces in Qm , because
b = −2m is non-vanishing. In this case, the unit normal N on M is A-principal.

Moreover, in (ii), if M is assumed to be Einstein, then the constant should be b = 0. This gives 4 = 2
k , which

implies a contradiction. In this case M has an A-isotropic unit normal vector field N in Qm . So we conclude a
corollary as follows:

Corollary 1.1 There do not exist any Einstein Hopf real hypersurfaces in the complex quadric Qm, m≥3.

2 The complex quadric

For more details in this section we refer to [6], [20], [26], [27] and [28]. The complex quadric Qm is the
complex hypersurface in CPm+1 which is defined by the equation z2

1 + · · · + z2
m+2 = 0, where z1, . . . , zm+2 are

homogeneous coordinates on CPm+1. We equip Qm with the Riemannian metric which is induced from the Fubini
Study metric on CPm+1 with constant holomorphic sectional curvature 4. The Kähler structure on CPm+1 induces
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canonically a Kähler structure (J, g) on the complex quadric. For each z ∈ Qm we identify TzCPm+1 with the
orthogonal complement C

m+2 � Cz of Cz in C
m+2 (see Kobayashi and Nomizu [6]). The tangent space Tz Qm can

then be identified canonically with the orthogonal complement C
m+2 � (Cz ⊕ Cρ) of Cz ⊕ Cρ in C

m+2, where
ρ ∈ νz Qm is a normal vector of Qm in CPm+1 at the point z.

The complex projective space CPm+1 is a Hermitian symmetric space of the special unitary group SUm+2,
namely CPm+1 = SUm+2/S(Um+1U1). We denote by o = [0, . . . , 0, 1] ∈ CPm+1 the fixed point of the action of
the stabilizer S(Um+1U1). The special orthogonal group SOm+2 ⊂ SUm+2 acts on CPm+1 with cohomogeneity
one. The orbit containing o is a totally geodesic real projective space RPm+1 ⊂ CPm+1. The second singular
orbit of this action is the complex quadric Qm = SOm+2/SOm SO2. This homogeneous space model leads to the
geometric interpretation of the complex quadric Qm as the Grassmann manifold G+

2

(
R

m+2
)

of oriented 2-planes
in R

m+2. It also gives a model of Qm as a Hermitian symmetric space of rank 2. The complex quadric Q1 is
isometric to a sphere S2 with constant curvature, and Q2 is isometric to the Riemannian product of two 2-spheres
with constant curvature. For this reason we will assume m ≥ 3 from now on.

In another way, the complex projective space CPm+1 can be defined by using the Hopf fibration

π : S2m+3−→CPm+1, z−→[z],

which is said to be a Riemannian submersion. Then naturally we can consider the following diagram for the
complex quadric Qm as follows:

The submanifold Q̃ of codimension 2 in S2m+3 is called the Stiefel manifold of orthonormal 2-frames in R
m+2,

which is isomorphic to the oriented real 2-plane Grassmannians G+
2

(
R

m+2
)
, which is given by

Q̃ = {x + iy ∈ C
m+2|g(x, x) = g(y, y) = 1

2
and g(x, y) = 0},

where g(x, y) = ∑m+2
i=1 xi yi for any x = (x1, . . ., xm+2), y = (y1, . . ., ym+2) ∈ R

m+2. Then the tangent space
is decomposed as Tz S2m+3 = Hz⊕Fz and Tz Q̃ = Hz(Q)⊕Fz(Q) at z = x + iy ∈ Q̃ respectively, where the
horizontal subspaces Hz and Hz(Q) are given by Hz = (Cz)⊥ and Hz(Q) = (Cz⊕Cz̄)⊥, and Fz and Fz(Q) are
fibers which are isomorphic to each other. Here Hz(Q) becomes a subspace of Hz of real codimension 2 and
orthogonal to the two unit normals −z̄ and −J z̄. Explicitly, at the point z = x + iy ∈ Q̃ it can be described as

Hz = {u + iv ∈ C
m+2 | g(x, u) + g(y, v) = 0, g(x, v) = g(y, u)}

and

Hz(Q) = {u + iv ∈ Hz | g(u, x) = g(u, y) = g(v, x) = g(v, y) = 0},
where C

m+2 = R
m+2 ⊕ iRm+2, and g(u, x) = ∑m+2

i=1 ui xi for any u = (u1, . . ., um+2), x = (x1, . . ., xm+2) ∈
R

m+2.
These spaces can be naturally projected by the differental map π∗ as π∗ Hz = Tπ(z)CPm+1 and π∗ Hz(Q) =

Tπ(z) Q respectively. This gives that at the point π(z) = [z] the tangent subspace T[z] Qm becomes a complex
subspace of T[z]CPm+1 with complex codimension 1 and has two unit normal vector fields −z̄ and −J z̄ (see
Reckziegel [20]).

Then let us denote by Az̄ the shape operator of Qm in CPm+1 with respect to the unit normal z̄. It is defined
by Az̄w = ∇̄w z̄ = w̄ for a complex Euclidean connection ∇̄ induced from C

m+2 and all w ∈ T[z] Qm . That is, the
shape operator Az̄ is just a complex conjugation restricted to T[z] Qm . Moreover, it satisfies the following for any
w ∈ T[z] Qm and any λ ∈ S1⊂C

A2
λz̄w = Aλz̄ Aλz̄w = Aλz̄λw̄

= λAz̄λw̄ = λ∇̄λw̄ z̄ = λλ̄ ¯̄w

= |λ|2w = w.
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Accordingly, A2
λz̄ = I for any λ ∈ S1. So the shape operator Az̄ becomes an anti-commuting involution such that

A2
z̄ = I and AJ = −J A on the complex vector space T[z] Qm and

T[z] Q
m = V (Az̄) ⊕ J V (Az̄),

where V (Az̄) = R
m+2 ∩ T[z] Qm is the (+1)-eigenspace and J V (Az̄) = iRm+2 ∩ T[z] Qm is the (−1)-eigenspace

of Az̄ . That is, Az̄ X = X and Az̄ J X = −J X , respectively, for any X ∈ V (Az̄).
Geometrically this means that the shape operator Az̄ defines a real structure on the complex vector space

T[z] Qm , or equivalently, is a complex conjugation on T[z] Qm . Since the real codimension of Qm in CPm+1 is 2,
this induces an S1-subbundle A of the endomorphism bundle End(T Qm) consisting of complex conjugations.

There is a geometric interpretation of these conjugations. The complex quadric Qm can be viewed as the
complexification of the m-dimensional sphere Sm . Through each point [z] ∈ Qm there exists a one-parameter
family of real forms of Qm which are isometric to the sphere Sm . These real forms are congruent to each other
under action of the center SO2 of the isotropy subgroup of SOm+2 at [z]. The isometric reflection of Qm in such a
real form Sm is an isometry, and the differential at [z] of such a reflection is a conjugation on T[z] Qm . In this way
the family A of conjugations on T[z] Qm corresponds to the family of real forms Sm of Qm containing [z], and the
subspaces V (A) ⊂ T[z] Qm correspond to the tangent spaces T[z] Sm of the real forms Sm of Qm .

The Gauss equation for Qm ⊂ CPm+1 implies that the Riemannian curvature tensor R̄ of Qm can be described
in terms of the complex structure J and the complex conjugations A ∈ A:

R̄(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)J X − g(J X, Z)JY − 2g(J X, Y )J Z

+ g(AY, Z)AX − g(AX, Z)AY + g(J AY, Z)J AX − g(J AX, Z)J AY.

Note that J and each complex conjugation A anti-commute, that is, AJ = −J A for each A ∈ A.
For every unit tangent vector W ∈ Tz Qm there exist a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A)

such that

W = cos(t)X + sin(t)JY

for some t ∈ [0, π/4]. The singular tangent vectors correspond to the values t = 0 and t = π/4. When W = X for
X ∈ V (A), t = 0, there exist many kinds of maximal 2-flats RX + RZ for Z ∈ V (A) orthogonal to X ∈ V (A).
So the tangent vector X is said to be singular. When W = (X + JY )/

√
2 for t = π

4 , it becomes also a singular
tangent vector, which belongs to many kinds of maximal 2-flats given by R(X + JY ) + RZ for any Z ∈ V (A)
orthogonal to X∈V (A) or R(X + JY ) + RJ Z for any J Z∈J V (A). If 0 < t < π/4 then the unique maximal flat
containing W is RX ⊕ RJY .

3 Some general equations

Let M be a real hypersurface in Qm and denote by (φ, ξ, η, g) the induced almost contact metric structure.
Note that ξ = −J N , where N is a (local) unit normal vector field of M . The tangent bundle T M of M splits
orthogonally into T M = C ⊕ Rξ , where C = ker(η) is the maximal complex subbundle of T M . The structure
tensor field φ restricted to C coincides with the complex structure J restricted to C, and φξ = 0.

At each point z ∈ M we define a maximal A-invariant subspace of Tz M , z∈M as follows:

Qz = {X ∈ Tz M | AX ∈ Tz M for all A ∈ Az}.
Lemma 3.1 (See [26].) For each z ∈ M we have

(i) If Nz is A-principal, then Qz = Cz .
(ii) If Nz is not A-principal, there exists a conjugation A ∈ A and orthonormal vectors X, Y ∈ V (A) such

that Nz = cos(t)X + sin(t)JY for some t ∈ (0, π/4]. Then we have Qz = Cz � C(J X + Y ).

We now assume that M is a Hopf hypersurface. Then the Reeb vector field ξ = −J N satisfies that

Sξ = αξ
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for the smooth Reeb function α = g(Sξ, ξ) on M . When we consider the transform J X of the Kähler structure J
on Qm for any vector field X on M in Qm , we may put

J X = φX + η(X)N

for a unit normal N to M . Then we now consider the Codazzi equation

g((∇X S)Y − (∇Y S)X, Z) = η(X)g(φY, Z) − η(Y )g(φX, Z) − 2η(Z)g(φX, Y )

+ g(X, AN)g(AY, Z) − g(Y, AN)g(AX, Z)

+ g(X, Aξ)g(J AY, Z) − g(Y, Aξ)g(J AX, Z).

Putting Z = ξ we get

g((∇X S)Y − (∇Y S)X, ξ) = −2g(φX, Y ) + g(X, AN)g(Y, Aξ) − g(Y, AN)g(X, Aξ)

− g(X, Aξ)g(JY, Aξ) + g(Y, Aξ)g(J X, Aξ).

On the other hand, we have

g((∇X S)Y − (∇Y S)X, ξ) = g((∇X S)ξ, Y ) − g((∇Y S)ξ, X)

= (Xα)η(Y ) − (Yα)η(X) + αg((Sφ + φS)X, Y ) − 2g(SφSX, Y ).

Comparing the previous two equations and putting X = ξ yields

Yα = (ξα)η(Y ) − 2g(ξ, AN)g(Y, Aξ) + 2g(Y, AN)g(ξ, Aξ).

Reinserting this into the previous equation yields

g((∇X S)Y − (∇Y S)X, ξ) = −2g(ξ, AN)g(X, Aξ)η(Y ) + 2g(X, AN)g(ξ, Aξ)η(Y )

+ 2g(ξ, AN)g(Y, Aξ)η(X) − 2g(Y, AN)g(ξ, Aξ)η(X)

+αg((φS + Sφ)X, Y ) − 2g(SφSX, Y ).

Altogether this implies

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X, Y ) − 2g(φX, Y ) + g(X, AN)g(Y, Aξ)

− g(Y, AN)g(X, Aξ) − g(X, Aξ)g(JY, Aξ) + g(Y, Aξ)g(J X, Aξ)

+ 2g(ξ, AN)g(X, Aξ)η(Y ) − 2g(X, AN)g(ξ, Aξ)η(Y )

− 2g(ξ, AN)g(Y, Aξ)η(X) + 2g(Y, AN)g(ξ, Aξ)η(X).

At each point z ∈ M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)J Z2

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π
4 (see Prop. 3 in Reckziegel [20]). Note that t is a

function on M . First of all, since ξ = −J N , we have

AN = cos(t)Z1 − sin(t)J Z2,

ξ = sin(t)Z2 − cos(t)J Z1,

Aξ = sin(t)Z2 + cos(t)J Z1.

This implies g(ξ, AN) = 0 and hence

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X, Y ) − 2g(φX, Y )

+ g(X, AN)g(Y, Aξ) − g(Y, AN)g(X, Aξ) − g(X, Aξ)g(JY, Aξ)

+ g(Y, Aξ)g(J X, Aξ) − 2g(X, AN)g(ξ, Aξ)η(Y ) + 2g(Y, AN)g(ξ, Aξ)η(X).
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4 Proof of Main Theorem 1

By the equation of Gauss, the curvature tensor R(X, Y )Z for a real hypersurface M in Qm induced from the
curvature tensor R̄ of Qm can be described in terms of the complex structure J and the complex conjugations
A ∈ A as follows:

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ

+ g(AY, Z)AX − g(AX, Z)AY + g(J AY, Z)J AX − g(J AX, Z)J AY

+ g(SY, Z)SX − g(SX, Z)SY

for any X, Y, Z∈Tz M , z∈M .
From this, contracting Y and Z on M in Qm , we have for a pseudo-Einstein real hypersurface M in Qm

Ric(X) = (2m − 1)X − X − φ2 X − 2φ2 X

− g(AN , N)AX − X + g(AX, N)AN − g(J AN , N)J AX

− X + g(J AX, N)J AN + (TrS)SX − S2 X

= (2m − 1)X − 3η(X)ξ − g(AN , N)AX + g(AX, N)AN

− g(J AN , N)J AX + g(J AX, N)J AN + (TrS)SX − S2 X

= aX + bη(X)ξ (4.1)

where we have used the following

2m−1∑
i=1

g(Aei , ei ) = TrA − g(AN , N) = −g(AN , N),

2m−1∑
i=1

g(AX, ei )Aei =
2m∑
i=1

g(AX, ei )Aei − g(AX, N)AN = X − g(AX, N)AN ,

2m−1∑
i=1

g(J Aei , ei )J AX =
2m∑
i=1

g(J Aei .ei )J AX − g(J AN , N)J AX,

2m−1∑
i=1

g(J AX, ei )J Aei =
2m∑
i=1

g(J AX, ei )J Aei − g(J AX, N)J AN

= J AJ AX − g(J AX, N)J AN

= X − g(J AX, N)J AN .

Now in this section we want to prove our Main Theorem 1 in the introduction. In order to do this, let us put
X = ξ into (4.1). Then we have

(a + b)ξ = 2(m − 2)ξ − g(AN , N)Aξ + g(Aξ, ξ)Aξ + (hα − α2)ξ,

where the function h denotes h = traceS. This gives

2g(AN , N)Aξ = {
2(m − 2) + (

hα − α2
) − (a + b)

}
ξ,

because we have used that

g(Aξ, ξ) = g(AJ N , J N) = −g(J AN , J N) = −g(AN , N).

Then it follows that

g(AN , N)g(Aξ, X) = 0 (4.2)
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for any vector field X orthogonal to ξ . Then (4.2) gives that g(AN , N) = 0 or Aξ = βξ . From the first case
we know that the unit normal vector field N is A-isotropic. The latter part and the involution of the complex
conjugation A on Qm give ξ = A2ξ = β Aξ = β2ξ . This gives β = ±1. Now let us consider β = −1. Then
Aξ = −ξ = J N and Aξ = −AJ N = J AN . This means AN = N , that is, the unit normal N is A-principal.

This gives a complete proof of our Main Theorem 1 in the introduction. By virtue of this theorem, we could
divide the proof of Main Theorem 2 in two cases depending on N is A-isotropic or N is A-principal. So in
section 5 we give a complete classification of pseudo-Einstein real hypersurfaces in Qm with A-principal normal,
and in section 6 we will complete our Main Theorem 2 for the case of A-isotropic unit normal.

5 Pseudo-Einstein real hypersurfaces with A-principal normal vector
field

From the expression of the curvature tensor, contracting Y and Z on M in Qm , we have

Ric(X) = (2m − 1)X − X − φ2 X − 2φ2 X

− g(AN , N)AX − X + g(AX, N)AN − g(J AN , N)J AX

− X + g(J AX, N)J AN + (TrS)SX − S2 X

= (2m − 1)X − 3η(X)ξ − g(AN , N)AX + g(AX, N)AN

− g(J AN , N)J AX + g(J AX, N)J AN + (TrS)SX − S2 X. (5.1)

Now in this section we consider only an A-principal normal vector field N , that is, AN = N , for a real
hypersurface M in Qm with the notion of pseudo-Einstein. Then (5.1) becomes

Ric(X) = (2m − 1)X − 2η(X)ξ − AX + hSX − S2 X

= aX + bη(X)ξ (5.2)

where h = TrS denotes the mean curvature of M in Qm , which is defined by the trace of the shape operator S on
M and we have used Aξ = −ξ . Then from this, by differentiating the Ricci tensor, we have

0 = −(2 + b)g(∇Xξ, Y )ξ − (2 + b)η(Y )∇Xξ − (∇X A)Y + (Xh)SY

+ h(∇X S)Y − (∇X S2)Y

= −(2 + b)g(φSX, Y )ξ − (2 + b)η(Y )φSX − (∇X A)Y + (Xh)SY

+ h(∇X S)Y − (∇X S2)Y, (5.3)

where (∇X A)Y = ∇X (AY ) − A∇X Y . Here, AY belongs to Tz M , z∈M , from the fact that g(AY, N) =
g(Y, AN) = g(Y, N) = 0 for any tangent vector Y on M . Then by putting Y = ξ in (5.3) and using the no-
tion of Hopf, we know that

(2 + b)φSX = −(∇X A)ξ + (Xh)Sξ + h(∇X S)ξ − (∇X S2)ξ

= −q(X)J Aξ − αη(X)AN + α(Xh)ξ + h(∇X S)ξ − (∇X S2)ξ. (5.4)

In order to get Equation (5.4) we have used the following

(∇X A)ξ = ∇X (Aξ) − A∇Xξ

= (∇̄X (Aξ))T − A∇Xξ

=
{
(∇̄X A)ξ + A∇̄Xξ

}T
− AφSX

= q(X)J Aξ + AφSX + g(SX, ξ)AN − AφSX

= q(X)J Aξ + αη(X)AN ,
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where (· · ·)T denotes the tangential component of the vector (· · ·) in Qm . Moreover, we get

(∇X S)ξ = ∇X (Sξ) − S∇Xξ = (Xα)ξ + αφSX − SφSX,

and (∇X S2) ξ = ∇X
(
S2ξ

) − S2∇Xξ = (
Xα2) ξ + α2φSX − S2φSX.

Then (5.4) can be written as follows:

(2 + b)φSX = −q(X)J Aξ − αη(X)AN + α(Xh)ξ + h(Xα)ξ + hαφSX − hSφSX

− (Xα2)ξ − α2φSX + S2φSX.

From this, taking the inner product with the Reeb vector field ξ , we know that the function hα − α2 is constant.
Then it can be reduced as follows:

(2 + b)φSX = −q(X)J Aξ − αη(X)AN + hαφSX − hSφSX − α2φSX + S2φSX,

because hα − α2 is constant on M . From this, if we take the tangential part, we have the following:(
2 + b + α2 − hα

)
φSX = −hSφSX + S2φSX (5.5)

for any tangent vector X∈Tz M , z∈M , because we have assumed that the unit vector field N is A-principal, that
is, AN = N , and J Aξ = −AJξ = −AN .

On the other hand, by the formula given in Suh [27] and [28] for a Hopf real hypersurface in complex quadric
Qm with A-principal normal vector field N , we have

2SφSX = α(φS + Sφ)X + 2φX.

From this, it follows that

2S2φSX = α
(
SφS + S2φ

)
X + 2SφX

= α
({α

2
(Sφ + φS)X + φX

}
+ S2φX

)
+ 2SφX

= α2

2
(Sφ + φS)X + αφX + αS2φX + 2SφX. (5.6)

Then summing up (5.5) and (5.6), we have

(2 + b + α2 − hα)φSX

= −h
{α

2
(Sφ + φS)X + φX

}
+ α2

4
(Sφ + φS)X + α

2
φX + α

2
S2φX + SφX. (5.7)

Remark 5.1 In Suh [26] and [27] it was proved that a real hypersurface M is a tube around an m-dimensional
hypersurface Sm in Qm if and only if the shape operator S of M satisfies Sφ + φS = kφ for a non-zero constant
k. Then let us check that whether a tube over Sm could satisfy (5.7) or not. Then (5.7) gives

(
2 + b + α2 − hα

)
φSX = −h

{
αk

2
+ 1

}
φX + α2

4
kφX + α

2
φX + α

2
S2φX + SφX.

If we consider an eigen vector such that SX = λX , then (Sφ + φS)X = kφX gives that SφX = (k − λ)φX .
From this, together with (5.7) and using αk = −2 (see [26] and [27]), the principal curvatures satisfy a quadratic
equation such that

αx2 − 2(α2 − hα + 1)x = 0.

Then λ = 0 or μ = √
2 tan

√
2r . Moreover, the trace h of the shape operator becomes h = α + (m − 1)k. But for

a tube over a sphere Sm we know that

√
2 tan

√
2r = 2

α
(α2 − hα + 1 + b)
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= 2(α − h) + 2

α
(1 + b)

= 4(m − 1)
α

+ 2

α
(1 + b)

= 2(2m − 1 + b)
α

= −(2m − 1 + b)
√

2 tan
√

2r,

where in the third equality we have used α − h = −(m − 1)k = 2(m−1)
α

and in the fifth equality α =
−√

2 cot
(√

2r
)

respectively. This gives that (2m + b)
√

2 tan
√

2r = 0. So we conclude that a pseudo-Einstein
real hypersurface in Qm which is a tube over an m-dimensional sphere Sm admits a = 2m and b = −2m. In this
case the unit normal N is A-principal.

If we put SX = λX , then (5.5) gives

(2 + α2 − hα)λφX = −hλSφX + λS2φX.

Moreover, (5.6) gives that

SφX = αλ + 2

2λ − α
φX.

From this, together with the above formula, we have

(
2 + b + α2 − hα

)
λφX = −hλ

(αλ + 2

2λ − α

)
φX + λ

(αλ + 2

2λ − α

)2
φX. (5.8)

Now let us put c = 2 + b + α2 − hα. By putting X = ξ in (5.2) and using ξ = αξ , S2ξ = α2ξ and Aξ = −ξ ,
we have

α − α2 = a + b + 2 − 2m.

This means that hα − α2 is constant and c = −(a − 2m).
First we consider the case that c �= 0. Naturally we can consider that λ �= 0 and μ = αλ+2

2λ−α
are both non-vanishing.

Then from (5.8) the function μ satisfies the following equation
μ2 − hμ + hα − α2 − 2 − b = 0. (5.9)

Here in (5.9) let us change the role of λ and μ conversely. Then the function λ also satisfies the following equation

λ2 − hλ + hα − α2 − 2 − b = 0. (5.10)

Combining these two equations, we have

(λ − μ)(λ + μ − h) = 0.

Then we know that the functions λ and μ are distinct. So it implies that h = λ + μ. Then it follows that

h = λ + μ = α + (m − 1)(λ + μ) = α + (m − 1)h,

this implies that h = − α
m−2 .

Moreover, the trace of the shape operator becomes h = λ + μ = λ + αλ+2
2λ−α

. This gives

λ2 − hλ + 1 + 1

2
αh = 0. (5.11)

Then (5.10) and (5.11) give

1 + 1

2
αh = a − 2m = − (

2 + b − hα + α2
)
. (5.12)

Then b = 1
2 hα − α2 − 3. This gives a contradiction as follows:
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In fact, (5.7) with h = − α
m−2 becomes

{
2 + b + (m − 1)α2

m − 2

}
φSX = α2

2(m − 2)
(φS + Sφ)X − hφX + α2

4
(Sφ + φS)X

+ α

2
φX + α

2
S2φX + SφX.

From this, by taking the symmetric part, we get the following
{

3 + b + (m − 1)α2

m − 2

}
g((φS − Sφ)X, Y ) = α

2
g

((
S2φ − φS2) X, Y

)
.

Then for any principal vector X such that SX = λX and SφX = μφX with distinct principal curvatures λ and μ

we know the following

(λ − μ)
{

3 + b + (m − 1)α2

m − 2
− α

2
(λ + μ)

}
φX = 0,

From this, together with the fact that λ + μ = h = − α
m−2 , it follows that

3 + b + {2(m − 1) + 1}α2

2(m − 2)
= 0,

which gives a contradiction. Because we know that

0 = 3 + b + {2(m − 1) + 1}α2

2(m − 2)

= 1

2
hα − α2 + (2(m − 1) + 1)α2

2(m − 2)

= − α2

2(m − 2)
− α2 + {2(m − 1) + 1}α2

2(m − 2)

= 1

m − 2
α2.

Then we have α = 0, which implies h = λ + μ = 0 and μ = 1
λ

. This gives a contradiction.
Next we consider the case that c = −(a − 2m) = 0. Then we can consider λ = 0 and μ = − 2

α
�= 0. In this

case, we can easily verify that h = − 2
α

. Then from Equation (5.7), together with hα = −2, the expression of the
shape operator becomes

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 · · · 0 0 · · · 0

0 − 2

α
· · · 0 0 · · · 0

...
...

. . .
...

... · · · 0

0 0 · · · − 2

α
0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This means equivalently the shape operator satisfies Sφ + φS = kφ, where k = − 2
α

. Then by Theorem C in the
introduction, M is a tube of radius r around a totally geodesic and totally real m-dimensional sphere Sm in Qm .
As previously mentioned, the tube is a pseudo-Einstein real hypersurface in complex quadric Qm with a = 2m
and b = −2m.
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6 Pseudo-Einstein real hypersurfaces with A-isotropic normal vector
field

In this section we want to prove Theorem 2 for pseudo-Einstein real hypersurfaces in Qm with A-isotropic unit
normal vector field.

In order to do this, from the assumption of pseudo-Einstein, first we prove an important proposition as follows:

Proposition 6.1 Let M be a pseudo-Einstein real hypersurface in complex quadric Qm, m≥3 with A-isotropic
unit normal. Then the distributions Q and Q⊥ = C�Q are invariant by the shape operator S of M in Qm.

P r o o f . Since M is A-isotropic, we know that g(Aξ, ξ) = 0, g(AN , N) = 0 and g(Aξ, N) = 0. In this case
the Ricci tensor becomes

Ric(X) = (2m − 1)X − 3η(X)ξ + g(AX, N)AN + g(AX, ξ)Aξ + hSX − S2 X

= aX + bη(X)ξ. (6.1)

In order to prove this proposition let us introduce two important formulas for an A-isotropic normal vector field
as follows: By putting X = Aξ and X = AN in (6.1), we have respectively

0 = (2m − a)Aξ + hS Aξ − S2 Aξ

and

0 = (2m − a)AN + hS AN − S2 AN .

Now let us consider another operator T defined by T = S2 − hS. Then T becomes a new symmetric operator.
The above two equation means that g(TQ⊥,Q) = 0, where Q⊥ = C − Q = [Aξ, AN ]. This gives the fact that
the distribution Q⊥ is invariant by the operator T .

On the other hand, the operator T commutes with the shape operator S, that is, T S = ST . Then there exist
a common basis which gives a simultaneous digonalization for both two symmetric operators S and T , which
implies g(SQ⊥,Q) = 0 for the shape operator S on M in Qm . This means that the distribution Q⊥ is invariant by
the shape operator S. �

Putting X = ξ into (6.1), we have

a + b = hα − α2 + 2m − 4.

By Proposition 6.1, we may put S Aξ = β Aξ and S AN = γ AN . Then by (6.1), we have respectively

hβ − β2 + (2m − a) = 0, (6.2)

and

hγ − γ 2 + (2m − a) = 0. (6.3)

From these two equations, we know that (β − γ ){h − (β + γ )} = 0.
On the other hand, let us consider X∈Tλ⊂Q in (6.1) such that SX = λX , SφX = μφX , μ = αλ+2

2λ−α
. Then

respectively we have

λ2 − hλ + a − (2m − 1) = 0, (6.4)

and

μ2 − hμ + a − (2m − 1) = 0. (6.5)

Substracting (6.5) from (6.4), it follows that

(λ − μ){h − (λ + μ)} = 0.

Then in such an A-isotropic case we want to make the derivative of the Ricci tensor as follows:

(∇Y Ric)X = ∇Y (Ric(X)) − Ric(∇Y X)

= −3(∇Y η)(X)ξ − 3η(X)∇Y ξ
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+ g(X,∇Y (AN))AN + g(AX, N)∇Y (AN)

+ g((∇Y (Aξ), X)Aξ + η(AX)∇Y (Aξ) + (Y h)SX

+ h(∇Y S)X − (∇Y S2)X.

Since AN = B N for an A-isotropic normal vector field (see [26] and [27]), we know that

∇Y (B N) = ∇Y (AN) = {(∇̄Y A)N + A∇̄Y N }T = {q(Y )J AN − ASY }T ,

and

∇Y (Aξ) = {(∇̄Y A)ξ + A∇̄Y ξ}T

= {q(Y )J Aξ + AφSY }T ,

where (· · ·)T denotes the tangential component of the vector (· · ·) in Qm . As M is pseudo-Einstein, the above
formula becomes

0 = −(3 + b)g(φSY, X)ξ − (3 + b)η(X)φSY + {q(Y )g(J AN , X)

− g(ASY, X)}AN + g(AX, N){q(Y )J AN − ASY }T + {q(Y )g(J Aξ, X)

+ g(AφSY, X)}Aξ + η(AX){q(Y )J Aξ + AφSY }T

+ (Y h)SX + h(∇Y S)X − (∇Y S2
)

X. (6.6)

Since the unit normal N is A-isotropic, we know that

g(ξ, Aξ) = 0, g(ξ, AN) = 0, g(AN , N) = 0, g(Aξ, N) = 0,

and

g(J AN , ξ) = −g(AN , N) = 0.

By taking the inner product (6.6) with the Reeb vector field ξ , we have

0 = −(3 + b)g(φSY, X) + g(AX, N)η(ASY ) + η(AX)η(AφSY )

+ (Y h)αη(X) + hg((∇Y S)X, ξ) − g
((∇Y S2) X, ξ

)
. (6.7)

On the other hand, let us use the following calculation for a Hopf hypersurface in Qm . Then by differentiating
Sξ = αξ , we have

(∇X S)ξ = (Xα)ξ + αφSX − SφSX,

(∇X S2)ξ = (Xα2)ξ + α2φSX − S2φSX.

From this, together with putting X = ξ in (6.6) and using g(ξ, AN) = g(Aξ, ξ) = 0, we have

(3 + b)φSY = (Y h)Sξ + h(∇Y S)ξ − (∇Y S2
)
ξ − g(ASY, ξ)AN + g(AφSY, ξ)Aξ

= (Y h)αξ + h{(Yα)ξ + αφSY − SφSY } − {(
Yα2

)
ξ + α2φSY − S2φSY

}
− g(ASY, ξ)AN + g(AφSY, ξ)Aξ.

From this, taking the inner product with Reeb vector field ξ , it follows that the function hα − α2 is constant on
M . Then it can be rearranged as follows:

(3 + b + α2 − αh)φSY = −hSφSY + S2φSY − g(ASY, ξ)AN + g(AφSY, ξ)Aξ. (6.8)

Since the unit normal N is A-isotropic, we know that g(ξ, Aξ) = 0. Moreover, by Lemma 4.2 in [26], we have
the following

2SφSX = α(Sφ + φS)X + 2φX − 2g(X, AN)Aξ + 2g(X, Aξ)AN . (6.9)
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On the other hand, by Proposition 6.1, the distribution Q⊥ is invariant by the shape operator S. Then (6.9)
gives the following for S AN = γ AN

(2γ − α)Sφ AN = (αγ + 2)φ AN − 2Aξ

= (αγ + 2)φ AN − 2φ AN

= αγφ AN .

Since Aξ = φ AN , we have the following

S Aξ = αγ

2γ − α
Aξ.

From (6.2) and (6.3) we have two cases that γ = β, or h = γ + β, where β = αγ

2γ−α
. Then the first case

γ = β = αγ

2γ−α
gives

γ = 0 or γ = α. (6.10)

The latter case h = γ + β only occurs for γ �= β. This case h = γ + β can be regarded as Case III which
will be discussed in detail at the final part of section 6. Now by putting Y = φ AN in (6.8) such that SY = γ Y ,
SφY = βφY , β = αγ

2γ−α
we know that

(3 + b + α2 − αh)γ = −hγβ + γβ2 + γ.

Since γ �= 0, the equation becomes

2 + b + α2 − αh = −hβ + β2.

From this, together with h = γ + β, it follows that

αγ 2 − 2(2 + b + α2)γ + (2 + b + α2)α = 0 (6.11)

for γ �= 0 and using the equation h = γ + αγ

2γ−α
, that is, γ 2 − hγ + 1

2αh = 0. So by using this equation, in Case III
we will show that the latter case h = γ + β for γ �= β can not happen.

On the other hand, on the distribution Q we know that AX∈Tz M , z∈M , because AN∈Q⊥. So (6.9), together
with the fact that g(X, Aξ) = 0 and g(X, AN) = 0 for any X∈Q, imply that

2SφSX = α(Sφ + φS)X + 2φX. (6.12)

Then we can take an orthonormal basis X1, . . ., X2(m−2)∈Q such that AXi = λi Xi for i = 1, . . ., m − 2. Then by
(6.9) we know that

SφXi = αλi + 2

2λi − α
φXi .

Accordingly, by (6.10) and (6.12) the shape operator S can be expressed as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 · · · 0 0 · · · 0
0 0(α) 0 0 · · · 0 0 · · · 0
0 0 0(α) 0 · · · 0 0 · · · 0
0 0 0 λ1 · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · · ...

0 0 0 0 · · · λm−2 0 · · · 0
0 0 0 0 · · · 0 μ1 · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · μm−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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So on the distribution Q, for any X, φX ∈ Q such that SX = λX and SφX = μφX , μ = αλ+2
2λ−α

, (6.8) becomes
the following

(3 + b + α2 − αh)λφX = −hλSφX + λS2φX + λg(X, Aξ)AN + λg(AφX, ξ)Aξ

= −hλSφX + λμ2φX

= −hλμφX + λμ2φX, (6.13)

where we have used C − Q = Span [Aξ, AN ] in the second equality. From this, if there exists a non-vanishing
principal curvature λ �= 0, then any principal curvature of the shape operator on the distribution Q satisfies the
following quadratic equation

x2 − hx + (αh − α2 − 3 − b) = 0. (6.14)

Summing up the above discussions including the first and the latter cases, we can divide into the following
three Cases I, II and III.

Case I. β = γ (= α) = 0
In this case we know a = 2m. Accordingly, by (6.4) and (6.5) the shape operator S can be expressed by

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
0 0 0 λ · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · · ...

0 0 0 0 · · · λ 0 · · · 0
0 0 0 0 · · · 0 μ · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now we consider the following subcase

Subcase 1.1. λ = μ, μ = αλ+2
2λ−α

.
In this subcase the solutions cot r and − tan r are roots of the quadratic equation x2 − αx − 1 = 0. Then M

becomes a real hypersurface with isometric Reeb flow. Then by the results mentioned in Suh [26] and [27], m
is even, say m = 2k for a natural number k, and the real structure A maps the principal curvature space Tcot r

and Ttan r , that is, ATcot r = Ttan r . So we should have the multiplicities of the principal curvatures cot r and tan r
become 2k − 2 respectively. Moreover, the two roots cot r and tan r respectively satisfy

cot2 r − h cot r + 1 = 0
and

tan2 r + h tan r + 1 = 0.

From the first equation we know

h cot r = 1 + cot2 r.

Moreover, the trace of the shape operator h becomes

h = α + (2k − 2)(cot r − tan r)

= (2k − 1)α

= (2k − 1)(cot r − tan r).

From these two equations we have

h cot r = (2k − 1)(cot r − tan r) cot r

= (2k − 1) cot2 r − (2k − 1)

= 1 + cot2 r.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 290, No. 11–12 (2017) / www.mn-journal.com 1899

This gives cot2 r = k
k−1 . Moreover, from the expression of the shape operator for λ = cot r and μ = − tan r , the

structure tensor φ commutes with the shape operator S of M in Qm , that is Sφ = φS. Then by the result due to

Suh [26] and [27], M is locally congruent to a tube of radius r = cot−1
√

k
k−1 around CPk is a pseudo-Einstein

real hypersurface in Q2k with a = 4k and b = −4 + 2
k .

Subcase 1.2. h = λ + μ, μ = αλ+2
2λ−α

.
When the principal curvatures λ and μ are different from each other, then we should have h = λ + μ =

λ + αλ+2
2λ−α

. Then naturally the root λ satisfies the quadratic equation

λ2 − hλ + 1

2
αh + 1 = 0.

From this, together with (6.4), it follows that αh = 0, which gives α = 0 or h = 0.
For the case where the function α = 0, then μ = 1

λ
. Then the trace h = α + (m − 2)(λ + μ) = α + (m − 2)h

gives h = − α
m−3 = 0. But in this subcase the trace becomes h = λ + 1

λ
= 0. This gives a contradiction. Moreover,

for the case h = 0, we also get λ2 + 1 = 0, which gives a contradiction.
Case II. β = γ (= α).
In such a case the shape operator S can be expressed as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 · · · 0 0 · · · 0
0 α 0 0 · · · 0 0 · · · 0
0 0 α 0 · · · 0 0 · · · 0
0 0 0 λ · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · · ...

0 0 0 0 · · · λ 0 · · · 0
0 0 0 0 · · · 0 μ · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then the roots λ and μ are solutions of the quadratic equation

x2 − hx + a − (2m − 1) = 0.

This gives

(λ − μ)(λ + μ − h) = 0.

Now let us consider two subcases as follows:

Subcase 2.1. λ = μ, μ = αλ+2
2λ−α

.
In this subcase we know that cot r and − tan r are solutions of the equation x2 − hx + a − (2m − 1) = 0.

Then even in this subcase M becomes a real hypersurface with isometric Reeb flow. Then also by using the result
in Suh [26] and [27], m is even, say m = 2k for a natural number k, and the real structure A maps the principal
curvature space as ATcot r = Ttan r . So we should have the multiplicities of the principal curvatures cot r and tan r
become 2k − 2 respectively.

So it follows that

cot2 r − h cot r + a − (2m − 1) = 0,

and

tan2 r + h tan r + a − (2m − 1) = 0.

Then the trace h becomes

h = 3α + (2k − 2)(cot r − tan r)

= (2k + 1)(cot r − tan r).
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From the above equations we see that

h cot r = (2k + 1)(cot r − tan r) cot r

= cot2 r + a − (2m − 1)

= (2k + 1) cot2 r − (2k + 1).

This implies

cot2 r = (2k + 1) + a − (2m − 1)
2k

.

Moreover, we know that γβ + (2m − a) = α2 + (2m − a) = 0. This gives α2 = cot2 r + tan2 r − 2 = a − 2m.
From this, together with the above equation, we have

(2k − 1) cot4 r − 2k cot2 r − 1 = 0.

Then it follows that

cot2 r = k + √
k2 + 2k − 1

2k − 1
. (6.15)

In this subcase the shape operator S takes the form

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 · · · 0 0 · · · 0
0 α 0 0 · · · 0 0 · · · 0
0 0 α 0 · · · 0 0 · · · 0
0 0 0 cot r · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · · ...

0 0 0 0 · · · cot r 0 · · · 0
0 0 0 0 · · · 0 − tan r · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · − tan r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This means that the shape operator S commutes with the structure tensor φ. Then by Suh [26] and [27] we have
the function α should be vanishing, that is, α = cot r − tan r = 0. Then the radius r becomes r = π

4 . From this,
together with (6.15), we have 2k − 1 = k + √

k2 + 2k − 1. This implies k = 1
2 , which gives a contradiction. So

such a case cannot happen.

Subcase 2.2. h = λ + μ

In this subcase we have

h = 3α + (m − 2)(λ + μ)

= λ + μ.

Then h = − 3α
m−3 . This gives λ + αλ+2

2λ−α
= − 3α

m−3 , which implies

2(m − 3)λ2 + 6αλ + {2(m − 3) − 3α2} = 0.

From this, together with (6.4), we know that

a = 2m − 3α2

2(m − 3)
. (6.16)

On the other hand, by the assumption of α = β = γ , we have

a = hα − α2 + 2m.

From this, together with (6.16), it follows that

hα − α2 + 2m = 2m − 3α2

2(m − 3)
.
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This gives that (2m − 3)α2 = 0, which implies α = 0. Then h = 0 gives λ = −μ = − 1
λ

. Then we get a contra-
diction. So such a subcase does not appear.

Case III. h = β + γ , β �= γ.

As mentioned previously, let us consider (6.11). In such a case the shape operator S can be expressed as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 · · · 0 0 · · · 0
0 β 0 0 · · · 0 0 · · · 0
0 0 γ 0 · · · 0 0 · · · 0
0 0 0 λ · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · · ...

0 0 0 0 · · · λ 0 · · · 0
0 0 0 0 · · · 0 μ · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then h = β + γ = γ + αγ

2γ−α
gives the following equation

γ 2 − hγ + 1

2
αh = 0.

So two roots γ and β are solutions of the equation x2 − hx + 1
2αh = 0 with

γβ = a − 2m = 1

2
αh, (6.17)

where in the first equality we have used the assumption h = β + γ from (6.2). Then we could divide this into two
subcases as follows:

Subcase 3.1. h = λ + μ

Then both roots λ and μ are the solutions of the following equation

x2 − hx + 1

2
αh + 1 = 0.

On the other hand, let us write (6.14) again as follows:

x2 − hx + (αh − α2 − 3 − b) = 0.

Comparing these two equations, we know that M is a pseudo-Einstein real hypersurface satisfying

a = 2m + 1

2
αh and b = 1

2
αh − α2 − 4, (6.18)

because we know that

a + b = hα − α2 + 2m − 4.

On the other hand, the trace h can be written as follows:

h = λ + μ

= β + γ

= α + β + γ + 2(m − 2)(λ + μ)

= α + h + 2(m − 2)h

= α + (2m − 3)h.

Then the trace becomes

h = − α

2(m − 2)
. (6.19)
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From this, together (6.11) and the equation x2 − hx + 1
2αh = 0, we have

h = 2(α2 + b + 2)
α

= − α

2(m − 2)
.

Then it follows that

b = − α2

4(m − 2)
− α2 − 2. (6.20)

On the other hand, in Case 3 we have already mentioned that the constant b is given in (6.18). Then (6.18) and
(6.19) give

b = 1

2
αh − α2 − 4 = − α2

4(m − 2)
− α2 − 4. (6.21)

So, if we compare the two constants b in (6.20) and (6.21), we get a contradiction. So this case can not occur.

Subcase 3.2. λ = μ, μ = αλ+2
2λ−α

.
Then λ = μ = cot r or λ = μ = − tan r , α = 2 cot 2r . Of course, the trace h becomes the following

h = β + γ

= α + β + γ + (2k − 2)(cot r − tan r).

Then this gives (2k − 1)α = 0, which implies α = 0, that is, r = π
4 . Moreover, by (6.17), α = 0 gives a = 2m and

γβ = 0. So this implies β = αγ

2γ−α
= 0 and γ = αβ

2β−α
= 0. This gives a contradiction, because we have assumed

β �= γ .
Summing up all Subcases 3.1, 3.2, and 3.3, we note that Case III does not appear.

Remark 6.2 In this remark let us check that whether the Ricci tensor of the tube M over a totally geodesic
CPk in Qm , m = 2k, mentioned in Suh [26] and [27] satisfies the notion of pseudo-Einstein or not. Then by
Theorem B in the introduction, the shape operator S commutes with the structure tensor φ, that is, Sφ = φS. In
this case we know that the normal vector field N of M in Q2k is A-isotropic. Then g(AN , N) = 0, g(Aξ, ξ) = 0,
g(Aξ, N) = 0. So let us suppose that M is pseudo-Einstein. Then for any vector field X on M the Ricci tensor
Ric becomes

Ric(X) = (2m − 1)X − 3η(X)ξ + g(AX, N)AN + g(AX, ξ)Aξ + hSX − S2 X

= aX + bη(X)ξ (6.22)

for some constant real numbers a and b. Putting X = ξ into (6.22), we have

(a + b)ξ = (2m − 4)ξ + (hα − α2)ξ,

where

hα − α2 = {2 cot 2r + 2(k − 1)(cot r − tan r)}2 cot 2r − (2 cot 2r)2

= 2(k − 1)(2 cot 2r)2 = 8(k − 1) cot2 2r.

From this, together with m = 2k, we obtain

a + b = 4(k − 1)
{
1 + 2 cot2 2r

}
. (6.23)

For any X orthogonal to the vector fields ξ, Aξ, AN such that SX = cot r X Equation (6.22) becomes

aX = (4k − 1)X + {h cot r − cot2 r}X,

where

h cot r − cot2 r = {2 cot 2r + 2(k − 1)2 cot 2r} cot r − cot2 r
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= (2k − 1)(cot r − tan r) cot r − cot2 r

= 2(k − 1) cot2 r − (2k − 1).

From this, together with (6.23), we have

a = 2k + 2(k − 1) cot2 r,

b = −2k + 2(k − 1) tan2 r.

Putting X = Aξ into (6.22), and using the properties g(Aξ, ξ) = 0, A2ξ = ξ and S Aξ = 0, we have

a Aξ = (2m − 1)Aξ + Aξ = 2m Aξ = 4k Aξ.

From this, together with (6.23), it follows that a = 4k and b = −4 + 8(k − 1) cot2 2r . Comparing with the
previous values of a and b, we conclude that

cot2 r = k

k − 1
.

Summing up our discussions, we conclude that the tube of radius r = cot−1
√

k
k−1 around CPk in Q2k is a pseudo-

Einstein Hopf hypersurface in the complex quadric Q2k with A-isotropic unit normal. Of course, the constants a
and b are respectively given by a = 4k and b = −4 + 2

k . Because it has been calculated as follows:

b = −2k + 2(k − 1) tan2 r

= −2k + 2(k − 1)2

k

= −4 + 2

k
.
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